Expression of the orphan cytosolic sulfotransferase SULT1C3 in human intestine: characterization of the transcript variant and implications for function.
نویسندگان
چکیده
The cystolic sulfotransferse 1C3 (SULT1C3) gene was identified by computational analysis of the human genome and suggested to contain duplications of its last two exons (7a/b and 8a/b). Although the SULT1C3 isoform containing the more downstream exons 7b and 8b (SULT1C3d) has been expressed in Escherichia coli, crystallized, and characterized for activity, there is currently no evidence that SULT1C3 is expressed in any human tissue. Using reverse-transcription polymerase chain reaction, we detected SULT1C3 mRNA in the colorectal adenocarcinoma cell line (LS180), colon, and small intestine, but the amplified fragment contained the more upstream exons 7a and 8a. 3'-Rapid amplification of cDNA ends (RACE) confirmed that the SULT1C3 transcript expressed in LS180 cells contained exons 7a/8a, whereas 5'-RACE identified a noncoding exon 1. Full-length SULT1C3 transcript containing exons 7a/8a was amplified from LS180 and intestinal RNA, and in vitro transcription-translation of the cloned cDNA indicated that translation primarily began at the first of three in-frame ATG codons. Since SULT1C3 containing exons 7a/8a (SULT1C3a) would differ by 30 amino acids from SULT1C3d containing exons 7b/8b, we considered the functional implications of expressing one or the other isoform by generating structural models based on the reported crystal structure for SULT1C3d. Comparison of the structures indicated that five of the residues forming the substrate-binding pocket differed between the two isoforms, resulting in a change in both electron density and charge distribution along the inner wall of the substrate-binding pocket. These data indicate that SULT1C3 is expressed in human intestine but suggest that the expressed isoform is likely to differ functionally from the isoform that has been previously characterized.
منابع مشابه
Expression of the Orphan Cytosolic Sulfotransferase SULT4A1 and Its Major Splice Variant in Human Tissues and Cells: Dimerization, Degradation and Polyubiquitination
The cytosolic sulfotransferase SULT4A1 is highly conserved between mammalian species but its function remains unknown. Polymorphisms in the SULT4A1 gene have been linked to susceptibility to schizophrenia. There are 2 major SULT4A1 transcripts in humans, one that encodes full length protein (wild-type) and one that encodes a truncated protein (variant). Here, we investigated the expression of S...
متن کاملDmd055665 352..360
The cystolic sulfotransferse 1C3 (SULT1C3) gene was identified by computational analysis of the human genome and suggested to contain duplications of its last two exons (7a/b and 8a/b). Although the SULT1C3 isoform containing the more downstream exons 7b and 8b (SULT1C3d) has been expressed in Escherichia coli, crystallized, and characterized for activity, there is currently no evidence that SU...
متن کاملCloning, Expression and Characterization of Recombinant Human Fc Receptor Like 1, 2 and 4 Molecules
Background: The Fc receptor like (FCRL) molecules belong to the immunoglobulin (Ig) superfamily with potentially immunoregulatory <span style="font-va...
متن کاملExpression profile of ZFX isoform3/variant 5 in gastric cancer tissues and its association with tumor size
Objective(s):Previous studies demonstrate that changes in pre-mRNA splicing play a significant role in human disease development. Furthermore, many cancer-associated genes are regulated by alternative splicing. There are mounting evidences that splice variants which express predominantly in tumors, have clear diagnostic value and may provide potential drug targets. Located on the X chromosome, ...
متن کاملP-230: Analysis of TEX15 Expression in Testis Tissues of Severe Oligozoospermic and Non-Obstructive Azoospermic Men Referred to Royan Institute
Background: TEX15 is a novel protein that is required for chromosomal synapsis and meiotic recombination. Human TEX15 is located on chromosome 8(8p12 region) and expressed in testis and ovary, as is its mouse ortholog. Loss of TEX15 function in mice causes early meiotic arrest in males but not in females. Specifically, TEX15 deficient spermatocytes exhibit a failure in chromosomal synapsis. In ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 42 3 شماره
صفحات -
تاریخ انتشار 2014